go源码之chan

go源码之chan

Go 源码之 chan

一、总结

chan 提供了一种在 goroutine 之间进行数据交换和同步的方式。通道可以用于控制并发访问和共享数据,从而减少竞态条件和死锁问题,并且可以自然地处理异步事件和信号。如果你的应用程序需要在 goroutine 之间传递数据或消息,那么通道是一个不错的选择

  • 内部是一个 hchan 结构(字段见源码),环形队列 + 发送者双向链表 + 接收者双向链表 + 锁
  • channel 与 select 语句结合使用时,底层调用的还是 chansendchanrecv 函数
  • channel
    • 结构:环形缓存、sendq、recvq;
    • 流程:上锁/解锁,阻塞/非阻塞,缓冲/非缓冲,缓存入队出队,sudog 入队出队,协程休眠/唤醒

二、源码

/src/runtime/chan.go

  • 一个环形队列
  • 两个双向列表

image-20230323100951975

(一)hchan

buf + sendx + recvx 形成环形队列


type hchan struct {
	qcount   uint           // 队列中现存元素数量
	dataqsiz uint           // 队列容量(缓冲区)
	buf      unsafe.Pointer // 队列,指向一个动态分配的数组,用于存储 channel 中的元素
	elemsize uint16         // 队列中元素大小
	closed   uint32         // 0 正常	,1 关闭
	elemtype *_type         // 队列中元素类型,

	sendx uint // 队列(buf)已发送位置,当(sendx++)==dataqsiz,则从头开始发,sendx=0
	recvx uint // 队列(buf)已接收位置;
	// 当 `sendx` 和 `recvx` 相等时,channel 中无元素,发送 / 接收 操作阻塞

	recvq waitq // 双向链表 ,FIFO 由 recv 行为(也就是读 <-ch)阻塞在 channel 上的 goroutine 队列
	sendq waitq // 双向链表 ,FIFO 由 send 行为 (也就是写 ch<-) 阻塞在 channel 上的 goroutine 队列

	lock mutex // 读写锁,保护hchan中的所有字段,以及waitq中所有的字段
}

// 双向链表,存储了g
type waitq struct {
	first *sudog // 链表头部,协程 g 的数据结构
	last  *sudog // 链表尾部,协程 g 的数据结构
}

(二)创建

ch1 := make(chan int)
ch2 := make(chan int,2)

底层都是调用了 runtime.makechan()

  • 合法性校验
    • 数据类型大小校验
    • 内存溢出校验
  • 初始化 hchan
    • 初始化 无缓冲 hchan
    • 初始化 有缓冲 && 无指针元素 hchan
    • 初始化 无缓冲 && 有指针元素 hchan
    • 初始化 hchan 其他元素:如 dataqsize、elemsize、elemtype、lock
// 主要逻辑:合法性验证 和 分配地址空间
// t 是指向 chantype 的指针,size 表示缓冲区大小,0表无缓冲
func makechan(t *chantype, size int) *hchan {
	elem := t.elem // 元素的类型

	// ----------- 1. 合法性验证 ----------
	// 数据类型大小验证,大于1<<16时异常
	if elem.size >= 1<<16 {
		throw("makechan: invalid channel element type")
	}
	// 内存对齐(降低寻址次数),大于最大内存(8字节数)时异常
	if hchanSize%maxAlign != 0 || elem.align > maxAlign {
		throw("makechan: bad alignment")
	}

	// 传入的size大于堆可分配的最大内存时:内存溢出异常
	mem, overflow := math.MulUintptr(elem.size, uintptr(size))
	if overflow || mem > maxAlloc-hchanSize || size < 0 {
		panic(plainError("makechan: size out of range"))
	}

	// ----------- 2. 分配地址空间 ----------
	// hchanSize 为 hchan 结构大小
	// mem 为缓存区大小
	/* 根据 channel 中收发元素的类型和缓冲区的大小初始化 runtime.hchan 和 缓冲区,分为三种情况:
		* 如果不存在缓冲区,分配 hchan 结构体空间,即无缓存 channel
		* 如果 channel 存储的类型不是指针类型,分配连续地址空间,包括 hchan 结构体 + 数据
		* 默认情况包括指针,为 hchan 和 buf 单独分配数据地址空间
	更新 hchan 结构体的数据,包括 elemsize、elemtype 和 dataqsiz
	*/
	var c *hchan
	switch {
	case mem == 0:
		// 创建无缓冲的 chan ,buf==0 ,初始化 hchan
		c = (*hchan)(mallocgc(hchanSize, nil, true)) // hchanSize表示空hchan需要占用的字节
		c.buf = c.raceaddr()                         //  raceaddr内部实现为:return unsafe.Pointer(&c.buf)
	case elem.ptrdata == 0:
		// 有缓存区,并且队列中不存在指针,分配连续地址空间,大小为 hchanSize + mem
		c = (*hchan)(mallocgc(hchanSize+mem, nil, true))
		// buf指针指向空hchan占用空间的末尾
		c.buf = add(unsafe.Pointer(c), hchanSize)
	default:
		// 队列包含指针类型
		// 为buf单独开辟mem大小的空间,用来保存所有的数据
		c = new(hchan)
		c.buf = mallocgc(mem, elem, true)
	}

	c.elemsize = uint16(elem.size)   // 元素大小
	c.elemtype = elem                // 元素类型
	c.dataqsiz = uint(size)          // chan 缓存区大小
	lockInit(&c.lock, lockRankHchan) // 初始化锁

	if debugChan {
		print("makechan: chan=", c, "; elemsize=", elem.size, "; dataqsiz=", size, "\n")
	}
	return c
}

(三)发送

ch <- 1

执行 runtime.chansend1(SB)

  • 异常检查
    • 发送到 nil chan 中,阻塞挂起
    • 往 closed chan 发送(写),则 panic
    • 当前 chan 是否可以发送
  • 同步发送:recvq 中存在等待接收者,则直接唤醒并发送数据
  • 异步发送:c.qcount < c.dataqsiz 缓存区空闲,则数据发送到缓存区
  • 阻塞发送:当前面都不满足时 且 block = true 时:发送操作 线程阻塞 挂起,并且添加到 sendq 等待队列,直到有接收者接收才释放
/**
* @Description: 
 chansend函数主要可以归纳为四部分:
	 异常检查、同步发送、异步发送、阻塞发送:
* @Param:c:hchan结构;ep:发送的元素;block:是否阻塞;callerpc:
* @return: true发送成功,false发送失败
*/
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
  // ------------------------------------ 1.异常检查 ------------------------------------
	if c == nil { 
		if !block {
			return false
		}
		gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2) 	// 发送到 nil chan 中,阻塞挂起
		throw("unreachable")
	}
	..........

 																							 // 当channel不为nil,此时检查channel是否做好接收发送操作的准备,
  if !block && c.closed == 0 && full(c) { 	
		return false															// 非阻塞且未关闭: 1. 无缓存区,recvq为空 2. 有缓冲区,但是buffer已满
	}


	lock(&c.lock) // 先上锁

	if c.closed != 0 { // chan已经关闭,则解锁
		unlock(&c.lock)
		panic(plainError("send on closed channel")) 				// 往 closed chan 发送(写),则 panic
	}

  // ------------------------------------  2.同步发送 ------------------------------------
  																										// recvq 中存在等待接收者,则直接唤醒并发送数据
	if sg := c.recvq.dequeue(); sg != nil { 
		send(c, sg, ep, func() { unlock(&c.lock) }, 3)		// recvq 等待队列取取出 sg(sudog)并唤醒并发送数据 ep
		return true
	}
   
  // ------------------------------------  3.异步发送 ------------------------------------
  // (有缓存区,没有等待接收者,先发到缓冲区中,等有接收者再去读)
	if c.qcount < c.dataqsiz {  					// 存在的元素个数< 缓冲区:说明缓存区可以继续写数据
		qp := chanbuf(c, c.sendx) 					// 获取缓存区index地址
		typedmemmove(c.elemtype, qp, ep)		// 数据写入buffer
		c.sendx++ 													// 发送数据的下标++
		if c.sendx == c.dataqsiz { 					// 当发送数据的下标等于缓冲区,表数据发送完毕,从头开始
			c.sendx = 0
		}
		c.qcount++ 													// 元素数量++
		unlock(&c.lock) 										// 解锁
		return true 												// 返回结果
	}

	if !block {
		unlock(&c.lock) 										// 解锁
		return false
	}

  // ------------------------------------ 4. 阻塞发送 ------------------------------------
  // 当前面都不满足时(没有等待接收者,没有空闲缓冲区) 且 block = true 时,发送操作 线程阻塞 挂起,直到有接收者接收才释放:
	gp := getg()
	..........
  c.sendq.enqueue(mysg)  											// 将发送 的 sg 添加到 sendq 等待队列中
	return true
}
func full(c *hchan) bool {
	if c.dataqsiz == 0 { // 无缓冲
		return c.recvq.first == nil
	}
	// 有缓冲,现有元素的个数 是否等于 缓冲区容量时(缓冲区满)
	return c.qcount == c.dataqsiz
}
func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
   ......
   if sg.elem != nil {
      sendDirect(c.elemtype, sg, ep) //  将数据拷贝到接收变量的内存地址上
      sg.elem = nil
   }
   gp := sg.g
   unlockf()
   gp.param = unsafe.Pointer(sg)
   sg.success = true
   if sg.releasetime != 0 {
      sg.releasetime = cputicks()
   }
   goready(gp, skip+1) // 唤醒sudog协程;下一轮调度时会唤醒这个接收的 goroutine。
}
// 实现了等待队列的入队操作。它将一个元素添加到等待队列的末尾,并更新队列的 first 和 last 指针
func (q *waitq) enqueue(sgp *sudog) {
	sgp.next = nil // 表示该元素是队列的最后一个
	x := q.last    // 将等待队列 q 中的最后一个元素(如果存在)赋值给变量 x。
	if x == nil {  // 如果队列中最后一个都没有,则队列无元素,即 x 为 nil,
		sgp.prev = nil // 则将 sgp 元素的 prev 指针设为 nil,表示该元素是队列中的第一个元素,
		q.first = sgp  //  然后将队列的 first 和 last 指针都指向该元素,表示该元素是队列中唯一的元素。
		q.last = sgp   // 然后直接返回,结束入队操作。
		return
	}
	sgp.prev = x // sgp 是新加的最后元素,需要关联前一个元素(x为原队列中最后一个元素)
	x.next = sgp // 设置x的的下一个元素为新加的元素
	q.last = sgp // 设置q队列的最后一个元素
}

(四)接收

i <- ch i, ok <- ch

执行 runtime.chanrecv1(SB) 都是调用的 chanrecv()

  • 异常检查
    • 从 nil chan 中读取,阻塞挂起
    • 从 closed chan 接收(读),返回零值
    • 当前 chan 是否可以接收
  • 同步接收:sendq 中存在发送者,则直接唤醒并接收数据
  • 异步接收:c.qcount 队列中有元素,则则从 buf 中读取数据
  • 阻塞接收:当前面都不满足时 且 block = true 时:接收操作 线程阻塞 挂起,并且添加到 recvq 等待队列,直到有发送者才释放
chanrecv 函数的逻辑和 chansend 的逻辑基本一致

(五)关闭

close(ch)

closechan(c *hchan)

主要逻辑:

  • 异常检查:
    • 关闭 nil chan ,panic
    • 关闭 closed chan,panic
  • 标记 chan 为关闭状态
  • 释放等待的 sudog: 唤醒并调度等待队列 recvq、sendq 中的 sudog,所有接收者收到零值

func closechan(c *hchan) {
  // ------------------------------------ 1. 异常检查 ------------------------------------
	if c == nil {
		panic(plainError("close of nil channel")) 				// 关闭 nil chan ,panic
	}

	lock(&c.lock)																			// 上锁
	if c.closed != 0 {
		unlock(&c.lock)
		panic(plainError("close of closed channel"))		// 关闭 closed chan,panic
	}

	c.closed = 1																			// 标识chan已经关闭

   // ------------------------------------ 2. 释放等待的 sudog ------------------------------------
	var glist gList 																	// 存储 recvq、sendq 等待队列中的 sg(sudog)
	for {
		sg := c.recvq.dequeue()													// 将 recvq 等待队列中的  sg(sudog) 添加到 glist
		......
		glist.push(gp)
	}
	for {
		sg := c.sendq.dequeue()													// 将 sendq 等待队列中的  sg(sudog) 添加到 glist
		......
		glist.push(gp)
	}
	unlock(&c.lock)																		// 解锁

  for !glist.empty() {															//依次从 glist 中弹出 sg(sudog)并唤醒执行,所有接收者收到零值
		gp := glist.pop()
		gp.schedlink = 0
		goready(gp, 3)
	}
}

三、常见问题

1.为什么要使用环形队列

chan 的内部使用环形队列来存取元素,每次发/收元素时,会根据 sendx/recvx 记录的位置从队列 buf 中存取元素,

所以环形队列:buf+sendx+recvx 实现的,

使用环形数组实现的好处:

  • 避免对数组进行复制或者移动操作

    比如数组【1,2,3】,现在添加 4,变为【2,3,4】,数组就需要进行复制拷贝操作,如果是环形队列,则直接将 4 添加到队列的尾部即可,

  • 避免内存分配和拷贝的开销,从而提高程序的性能

    重复利用,避免重新分配内存

2. 关于 chan 的操作

image-20230328143228214

参考资料

Go 源码解析——Channel 篇 - 掘金 (juejin.cn)